

Intención de uso

Para la determinación cuantitativa del aspartato aminotransferasa (AST) en suero humano.

Importancia clínica

La AST está ampliamente distribuida en los tejidos con las concentraciones más altas se encuentran en el hígado, corazón, músculo esquelético y los riñones. Enfermedades que afectan a cualquiera de estos tejidos puede conducir a niveles elevados de AST en el suero. Después de un infarto de miocardio, los niveles de AST se elevan y alcanzan un pico después de 48 a 60 horas.

Enfermedades hepatobiliares, como la cirrosis, carcinoma metastásico y la hepatitis viral puede mostrar aumento de los niveles de AST. Otros trastornos que pueden llevar a un nivel elevado de AST son la distrofia muscular, la dermatomiositis, pancreatitis aguda y mononucleosis infecciosa.

Historia del método

Karmen² desarrollado un procedimiento de ensayo cinético en 1955 que estuvo basado en el uso del malato deshidrogenasa y NADH. Procedimientos optimizados fueron presentados por Henry³ en 1960 y Amador y Wacker⁴ en 1962. Estas modificaciones incrementan la precisión y reduce el efecto de las sustancias que interfieren. El Comité de Enzimas de la Sociedad Escandinava de Química Clínica y Fisiología Clínica⁵ publicó un método recomendado sobre la base de modificaciones optimizadas en 1974. En 1976, el Grupo de expertos sobre las enzimas de la Federación Internacional de Química Clínica (IFCC)⁵ propone la adición de piridoxal-5-fosfato a la mezcla de reacción para garantizar la máxima actividad. El IFCC7 publicó un método recomendado que incluía P-5-P en 1978. El presente método se basa en las recomendaciones de la IFCC pero no contiene P-5-P ya que la mayoría de las muestras contienen cantidades adecuadas de este cofactor para la recuperación completa de la actividad de AST 8,9,10

Principio

Aspartato aminotransferasa (AST) cataliza la transferencia del grupo amino de la L-aspartato de α -cetoglutarato para producir oxalacetato y L-glutamato. El oxalacetato se somete a la reducción de la oxidación simultánea de NADH a NAD en malato deshidrogenasa (MDH) la reacción catalizada por el indicador. La tasa resultante de la disminución de la absorbancia a 340nm es directamente proporcional a la actividad de la AST. Lactato deshidrogenasa (LDH) se añade para evitar la interferencia del piruvato endógeno que normalmente está presente en el suero.

Reactivos

Después de la combinación de R1 y R2 el reactivo contiene: ácido L-aspártico 240mM, α -cetoglutárico 12mM, LDH (microbiana)> 1000U/L, MDH (microbiana)> 800U/L, NADH 0.18 mM, 80 mM de buffer, pH 7,8 \pm 0.1, azida de sodio 0.01%, estabilizadores.

Preparación de los reactivos

Los reactivos están listos para el uso de sistemas capaces de manejar dos reactivos. Si un solo reactivo es necesario, preparar el reactivo de trabajo mezclando 5 partes de reactivo R1 con una parte de reactivo R2. (Por ejemplo, 250ul de R1 con 50ul de R2).

Almacenamiento de reactivos

- Almacenar los reactivos a 2-8°C.
- El reactivo de trabajo es estable durante 48 horas a temperatura ambiente. (15-30°C) y durante 14 días en el refrigerador (2-8°C).

Deterioro del reactivo

No utilizar el reactivo si:

1. La absorbancia inicial a 340nm es inferior a 0.800.

2. El reactivo no cumple con los parámetros establecidos de desempeño.

Precauciones

- Este juego de reactivos es para uso diagnóstico in vitro solamente.
- El reactivo R1 contiene azida de sodio (0,01%) como conservador. No se ingiera.
 Puede reaccionar con cañerías de plomo y cobre para formar azidas metálicas muy
 explosivas. Después de desecharlo, enjuague con abundante agua para evitar la
 acumulación de azida.

Recolección y Almacenamiento¹¹

- Suero no hemolizado es recomendable. Las células rojas contienen AST que puede dar resultados falsamente elevados.
- AST en suero es estable durante diez días en el refrigerador (2-8°C), dos semanas congeladas (-20°C), y cuatro días cuando se almacena a temperatura ambiente (15-30°C).

Interferencias

- 1. Un número de drogas y sustancias afectan la actividad de AST. Ver Young, et al. 12
- Los pacientes con severa deficiencia de vitamina B6 pueden tener una recuperación menor de AST, presumiblemente debido a la falta de fosfato de piridoxal.¹³
- Bilirrubina por lo menos a 18mg/dl y hemoglobina de al menos 300 mg/dl, se ha encontrado que tienen un efecto insignificante en este procedimiento.

Materiales suministrados

AST (SGOT) Los reactivos R1 y R2.

Materiales necesarios pero no suministrados

- Pipeta precisa.
- 2. Tubos de ensayo / rack.
- 3. Temporizador.
- 4. Espectrofotómetro capaz de leer a 340nm. (UV)
- Calefacción baño/bloque (37°C).

Procedimiento de prueba (automatizada)

Longitud de onda: 340nm Tipo de ensayo: Cinético Muestra/reactivo proporción: 1:11 Dirección de reacción: Decremento 37 ° C Temperatura: Lapso de tiempo: 60 segundos 60 segundos Tiempo de lectura: Bajo Normal: 5 U/L Alta Normal: 34 U/L

Parámetros de la aplicación de diversos instrumentos automatizados están disponibles. Por favor, póngase en contacto con el Departamento de Servicio Técnico del fabricante para obtener información específica.

Procedimiento de prueba (Manual)

- 1. Prepare el reactivo de acuerdo a las instrucciones.
- Pipeta de 1.0 ml de reactivo en los tubos apropiados y pre-caliente a 37°C durante cinco minutos.
- Añadir 0.100ml (100ul) de muestra reactivo, mezcle e incube a 37°C durante un minuto.
- Después de un minuto, leer y anotar la absorbancia a 340nm contra un blanco de agua. Regrese el tubo a 37°C. Repetir las lecturas cada minuto durante los próximos dos minutos
- 5. Calcular la absorbancia promedio de minutos de diferencia / (ΔAbs. /min.).
- El ΔAbs. /Min. multiplicado por el factor 1768 (véase el cálculo) se obtendrán resultados en UI/L.

Notas del procedimiento

- 5449 Research Drive Canton MI 48188 USA
- Si el espectrofotómetro está equipado con una cubeta de temperatura controlada, la mezcla de reacción se puede dejar en la cubeta, mientras que las lecturas de absorbancia se toman.
- Muestras turbias o ictéricas pueden dar lecturas altamente cuya absorbancia inicial excede la capacidad del espectrofotómetro. Resultados más precisos se pueden obtener mediante el uso de 0.05 ml (50ul) de muestra y multiplicando la respuesta final por dos.

Limitaciones

- Las muestras con valores por encima de 500 UI/L deben diluirse 1:1 con solución salina, reevaluar y multiplicar el resultado por dos.
- Los pacientes con severa deficiencia de vitamina B6 puede tener una recuperación menor de AST, presumiblemente debido a la falta de Fosfato de piridoxal.¹³

Calibración

El procedimiento está estandarizado por medio de la absorción milimolar del NADH tomada como 6.22 a 340nm en las condiciones de ensayo descritos.

Cálculo

Una Unidad Internacional (UI/L) se define como la cantidad de enzima que cataliza la transformación de un micromol de sustrato por minuto bajo condiciones específicas.

AST (IU/L) = $\Delta Abs. /Min. x 1.10 x 1000 = \Delta Abs. /Min. x 1768 1.22 x 0.10 x 1.0$

Donde ∆Abs. /Min. = Cambio de absorbancia por minuto

1000 = conversión de UI/ml a IU/L

1.10 = volumen de reacción total (ml)

6.22 = absortividad milimolar de NADH

0.10 = Volumen de la muestra (ml)

1.0 = paso de luz en cm

Ejemplo: Si el cambio promedio de absorbancia por minuto = 0.12 luego 0.12 x 1768 = 212 UI/L

NOTA: Si los parámetros de ensayo se modifican el factor tiene que volver a calcular mediante la fórmula anterior.

Unidades SI: Para convertir a las unidades del SI (nkat/L) se multiplican UI/L por 16.67.

Control de calidad

La validez de la reacción debe ser monitoreada con sueros de control con valores conocidos normales y anormales de AST (SGOT). Estos controles se deben ejecutar por lo menos en cada turno en el que los ensayos de la AST (SGOT) se llevan a cabo. Se recomienda que cada laboratorio establezca su propia frecuencia de la determinación del control.

Valores esperados¹³

8 a 22 UI/L (30°C)

5 a 34 UI/L (37°C)

Puesto que los valores esperados son afectados por la edad, sexo, dieta, y la ubicación geográfica, cada laboratorio debe establecer su propio rango de referencia para este procedimiento.

Rendimiento

- 1. Linealidad: 0-500 UI/L.
- Comparación: Estudios entre el presente método y un método similar arrojó un coeficiente de correlación de 0.999 y una ecuación de regresión de y = 0.98x + 1.6. (n = 125, rango = 15 a 659 UI/L)
- 3. Precisión:

<u>Media</u>	S.D.	C.V. %	<u>Media</u>	<u>S.D.</u>	C.V. %	
42	1.2	2.9	43	1.3	3.0	
202	1.7	0.8	206	4.0	1.9	
408	2.6	0.6	411	4.4	1.1	

4. Sensibilidad: La sensibilidad de este reactivo fue investigado por la lectura del cambio en la absorbancia a 340nm para una muestra de suero y las muestras con concentraciones conocidas. Diez réplicas fueron realizadas. Los resultados de esta investigación indicaron que, según el analizador utilizado, el AST (SGOT) reactivo mostró poca o nada desviación reactiva en una muestra cero. En las condiciones de reacción descritas, 1 U/L AST actividad da un ΔAbs/Min. De 0.0004.

Referencias

- 1. Tietz, N.W., Fundamentals of Clinical Chemistry, W.B. Saunders co., p 674 (1982).
- 2. Karmen, A., et al, J. Clin. Invest 34:126 (1955).
- 3. Henry, R.J., et al, Am. J. Clin. Path. 34:381 (1960)
- Amador, E., Wacker, W., Clin. Chem. 8:343 (1962).
- The Committee on Enzymes of the Scandinavian Society for Clinical Chemistry and Clinical Physiology, Scand. J. Clin. Lab. Invest 32:291 (1974).
- Expert Panel of Enzymes of the International Federation of Clinical Chemistry, Clin. Chem. Acta. 70:F19 (1976).
- Expert Panel of Enzymes of the International Federation of Clinical Chemistry, Clin. Chem. 24:720 (1978).
- 8. Jung, K., Bohm, M., Énzyme 23:201 (1978).
- 9. Hafkenscheid, J.C.M., Dijit, C.C.M., Clin. Chem. 25/1:55 (1979).
- 10. Horder, M., Bowers, G.N., Jr., Clin. Chem. 23:551 (1977).
- Henry, R.J., Clinical Chemistry: Principles and Technics, 2nd Ed., Hagerstown (MD), Harper & Row, P882 (1974).
- 12. Young, D.S., et al, Clin. Chem. 21:1D (1975).
- 13. Kaplan, L.A., Pesce, A.J., Clinical Chemistry, St. Louis, C.V. Mosby, p.911-912 (1989).

DISTRIBUIDO POR:

MANZANILLO No. 89 DESP. 110
COL. ROMA SUR C.P.06760 MEXICO, CDMX.
TEL. 5264-4553 FAX: 5264-4459
www.grupomoscaro.com

Rev. 1/02 P803-A7561-01